If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3k^2-6k+3=3
We move all terms to the left:
3k^2-6k+3-(3)=0
We add all the numbers together, and all the variables
3k^2-6k=0
a = 3; b = -6; c = 0;
Δ = b2-4ac
Δ = -62-4·3·0
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-6}{2*3}=\frac{0}{6} =0 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+6}{2*3}=\frac{12}{6} =2 $
| 3=-7x+17 | | 3x+2=×+2(x-1)+4 | | 2x+8+3x=7 | | 3.2x-11.86=3.5 | | 12-16x=-2x-2 | | 3/4x-4=1/2x+8 | | 3(5y+2)=21 | | 8m=$86.08 | | 24–5v=8 | | -5f=-40 | | 57=1-(-10x-6) | | x+x+x+x+x=999999999999999 | | (x/2)+4=6 | | r/2=-6 | | 8(6+y)=7(9+y) | | 4.4x-19.44=7.4 | | 6x-13=9-17x | | 1x+36=2x | | 4y-10(7y-5)=-16 | | 7-(x/4)=3 | | 9m^2-16=m | | 4y-10(7y-6)=-16 | | 8x^2+11=139 | | 2x+4(3x+12)=-8 | | -4x+8-11=18-8 | | -x2+13x-42=0 | | 64-16x=16x-8 | | 8-(4y-5)=4-5y | | 90=(2x+5)+(9x-3) | | 12i=2/3 | | -2x2+13x-42=0 | | 2/3y+3=3/4(y+8)-4 |